Optical Sensitivity Gain in Silica-Coated Plasmonic Nanostructures.

نویسندگان

  • Francesco Floris
  • Cristiana Figus
  • Lucia Fornasari
  • Maddalena Patrini
  • Paola Pellacani
  • Gerardo Marchesini
  • Andrea Valsesia
  • Flavia Artizzu
  • Daniela Marongiu
  • Michele Saba
  • Andrea Mura
  • Giovanni Bongiovanni
  • Franco Marabelli
  • Francesco Quochi
چکیده

Ultrathin films of silica realized by sol-gel synthesis and dip-coating techniques were successfully applied to predefined metal/polymer plasmonic nanostructures to spectrally tune their resonance modes and to increase their sensitivity to local refractive index changes. Plasmon resonance spectral shifts up to 100 nm with slope efficiencies of ∼8 nm/nm for increasing layer thickness were attained. In the ultrathin layer regime (<10 nm), which could be reached by suitable dilution of the silica precursors and optimization of the deposition speed, the sensitivity of the main plasmonic resonance to refractive index changes in aqueous solution could be increased by over 50% with respect to the bare plasmonic chip. Numerical simulations supported experimental data and unveiled the mechanism responsible for the optical sensitivity gain, proving an effective tool in the design of high-performance plasmonic sensors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergic combination of the sol–gel method with dip coating for plasmonic devices

Biosensing technologies based on plasmonic nanostructures have recently attracted significant attention due to their small dimensions, low-cost and high sensitivity but are often limited in terms of affinity, selectivity and stability. Consequently, several methods have been employed to functionalize plasmonic surfaces used for detection in order to increase their stability. Herein, a plasmonic...

متن کامل

Near-Field Enhanced Plasmonic-Magnetic Bifunctional Nanotubes for Single Cell Bioanalysis

Near-fi eld enhanced bifunctional plasmonic-magnetic (PM) nanostructures consisting of silica nanotubes with embedded solid nanomagnets and uniformly dual-surface-coated plasmonic Ag nanoparticles (NPs) are rationally synthesized. The solid embedded sections of nanotubes provide single-molecule sensitivity with an enhancement factor up to 7.2 × 10 9 for surfaceenhanced Raman scattering (SERS). ...

متن کامل

Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new a...

متن کامل

Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy

Photothermal stability and, therefore, consistency of both optical absorption and photoacoustic response of the plasmonic nanoabsorbers is critical for successful photoacoustic image-guided photothermal therapy. In this study, silica-coated gold nanorods were developed as a multifunctional molecular imaging and therapeutic agent suitable for image-guided photothermal therapy. The optical proper...

متن کامل

Fabrication and Characterization of Flexible and Tunable Plasmonic Nanostructures

We present a novel method to fabricate flexible and tunable plasmonic nanostructures based on combination of soft lithography and nanosphere lithography, and perform a comprehensive structural and optical characterization of these structures. Spherical latex particles are uniformly deposited on glass slides and used as molds for polydimethylsiloxane to obtain nanovoid structures. The diameter a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 5 17  شماره 

صفحات  -

تاریخ انتشار 2014